Optimized Neuromodulation of Vagal Stimulation for Inflammatory Modulation

Technology #7275

Questions about this technology? Ask a Technology Manager

Download Printable PDF

Image Gallery
Categories
Researchers
Yogi Anil Patel
Inventor Profile
External Link (www.linkedin.com)
Robert Butera
Faculty Inventor Profile
External Link (www.ece.gatech.edu)
Ravi Bellamkonda
Faculty Inventor Profile
External Link (bme.gatech.edu)
Tarun Saxena
Inventor Profile
External Link (www.linkedin.com)
Managed By
Rene' Meadors

Background: Afferent cervical vagus nerve activation amplifies systemic inflammatory processes resulting in an elevation of pro-inflammatory cytokines. In contrast, efferent activation of the cervical vagus nerve dampens systemic inflammatory processes, potentially moderating a wide-range of inflammatory pathological conditions. Unfortunately, current clinical approaches to cervical vagus nerve activation results in activation of both the afferent and efferent pathways. Precise and optimal control of neural circuits requires the ability to stimulate with directional specificity which can be achieved in experimental conditions by nerve transection; however transections are not viable clinically.

Technology: Yogi Anil Patel, Robert Butera, Ravi Bellamkonda, and Tarun Saxena from the Schools of Biomedical Engineering and Electrical & Computer Engineering at Georgia Tech have developed a safe and robust method for selective stimulation of vagal afferent and efferent pathways by pairing electrical stimulation with kilohertz electrical stimulation nerve block.  The approach has been evaluated for systemic inflammation in response to bacterial lipopolysaccharide induced endotoxemia in a rodent model. The researchers quantified both nerve activation and inhibition through electrophysiological recordings of peripheral nerve activity along with biochemical changes. The results demonstrated in the animal model indicate that afferent, but not efferent activation of the cervical vagus nerve synchronously activates the greater splanchnic nerve (and resulting elevation of pro-inflammatory cytokines) in a dose-dependent manner. In addition, efferent cervical vagus nerve activation enabled by complete afferent kilohertz electrical stimulation nerve block enhances the anti-inflammatory benefits and incomplete afferent kilohertz electrical stimulation nerve block exacerbates systemic inflammation.

Potential Commercial Applications: The invention has the potential to be an efficacious clinical strategy for achieving directional (afferent or efferent) peripheral nerve stimulation. The approach could be utilized in any peripheral nerve for development of neuromodulation technologies.

Benefits / Advantages:

  • Significantly enhances anti-inflammatory effects of vagus nerve stimulation
  • Pairs electrical stimulation with kilohertz electrical stimulation nerve block to achieve directional stimulation
  • Could be utilized to achieve quick, reliable anti-inflammatory clinical effects
  • Also provides a standard protocol for investigating neuromodulation of systemic inflammation